- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Akbari, Hassanali (2)
-
Hudson, Emily (1)
-
LaBelle, James (1)
-
LaBelle, James W. (1)
-
Newman, David L. (1)
-
Reimer, Ashton (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Theory and observations of Langmuir waves and turbulence induced in the auroral ionosphere by electron beams of magnetospheric-origin are reviewed. The theoretical discussions include a brief description of the electrostatic dispersion relation, excitation of Langmuir waves by electron beams, and the stability of beam distributions. The theory of Langmuir turbulence—including the parametric decay instability and wave collapse—is also briefly discussed. The main focus of the review, however, is on the observations of Langmuir waves and turbulence in the ionosphere by in-situ and ground-based sensors. A summary of five decades of in-situ wave and particle observations is presented and combined with a collection of more recent results from ground-based instruments. The ground-based observations include signatures of Langmuir turbulence in the form of coherent echoes in incoherent scatter radar measurements; signatures of electron beams in the form of auroral morphologies recorded by high-speed, high-resolution optical imagers; and electromagnetic emissions received on the ground at high latitudes. Uniting the various observations obtained by the vastly different sensors is shown to provide further insight into the micro-scale processes that occur in the ionosphere. Also discussed in this review is the potential of the ground-based sensors to provide a broader spatial and temporal context for single-point in-situ measurements of such processes.more » « less
-
A Statistical Study of Auroral Medium Frequency Bursts and Anomalous Incoherent Scatter Radar EchoesHudson, Emily; LaBelle, James; Reimer, Ashton; Akbari, Hassanali (, Radio Science)Abstract Different types of incoherent scatter radar (ISR) echoes are observed associated with aurora, including some which have been interpreted as signatures of cavitating Langmuir turbulence (CLT). Akbari et al. (2013)https://doi.org/10.1002/jgra.50314discussed two instances of correlation between CLT and naturally occurring radio emissions called medium frequency burst (MFB) which occur at substorm onsets. Based on that observation, radio detections of MFB from Toolik Lake Observatory have been applied to investigate occurrence of CLT in ISR data from Poker Flat Incoherent Scatter Radar and their possible correlation with MFB. Of 131 MFB events, 25 occurred within 15 min of an ISR echo detection, compared to 6 of 116 intervals of a control set with similar local time and seasonal distribution. The difference is significant at the 10−4level, suggesting that ISR echoes are more probable during substorm onset times identified using MFB as a proxy. However, only four observed ISR echoes coincident with one MFB event showed both specific characteristics consistent with CLT. Furthermore, investigation of the angle of arrival of MFB suggests that the electromagnetic emissions do not originate from the plasma volume where the ISR detects the echoes. The small number of coincident ISR echoes and MFB is expected due to the different volumes in which the emissions and the echoes are detected. 50% of the MFB events occurred within 20 min of a substorm onset independently identified versus 8% of the control set intervals, confirming the correlation of MFB with substorm onsets.more » « less
An official website of the United States government
